
no pattern exists between the x- and y-coordinates

P(green) =
$$\frac{3}{8}$$

P(yellow) = $\frac{2}{8} = \frac{1}{4}$

P(green and yellow) = P(green) • P(yellow) =
$$\frac{3}{8} \cdot \frac{1}{4} = \frac{3}{32}$$

What is the probability of getting a red jelly bean on first pick and then without replacing it, getting a green jelly bean on the second pick?

P(red) • P(green after red) =

$$\frac{4}{12} \cdot \frac{2}{11} = \frac{8}{132} = \frac{2}{33}$$

Probability

No Correlation

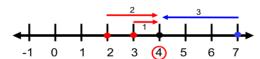
Probability of Dependent Events

Probability of Independent Events

If there are m ways for one event to occur and n ways for a second event to occur, then there are $m \cdot n$ ways for both events to occur.

Joe has two pairs of pants (blue and tan). He also has three shirts (red, green and white). List the possible outfits that Joe can make.

PANTS SHIRTS POSSIBLE OUTCOMES


red → blue pants with red shirt
blue → green → blue pants with green shirt
white → blue pants with white shirt
red → tan pants with red shirt
tan → green → tan pants with green shirt
white → tan pants with white shirt

2 · 3 or 6 possible outcomes

a measure of central tendency

2, 3, 4, 7

Balance Point

Numerical Average

$$\frac{2+3+4+7}{4} = \frac{16}{4} = \boxed{4}$$

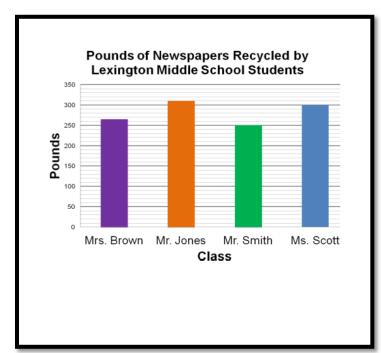
a measure of central tendency

Tree Diagram

Fundamental Counting Principal

Median

Mean

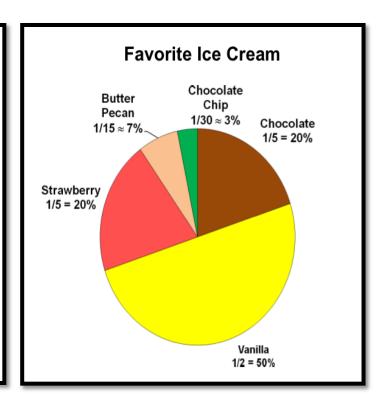

a measure of central tendency

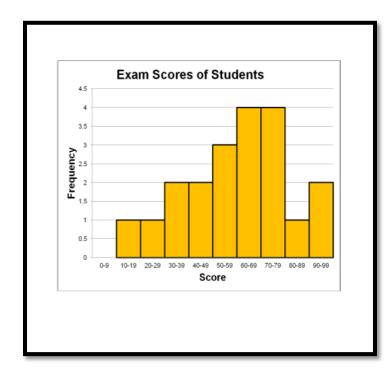
Data Sets	Mode
2, <mark>3</mark> , <mark>3</mark> , <u>3</u> , 5, 5, 9, 10	3
5.2, 5.4, 5.5, 5.6, 5.8, 5.9, 6.0	none
1, 1, 2, 5, 6, <mark>7</mark> , 7 , 9, 11, 12	1, 7
bir	/ nodal

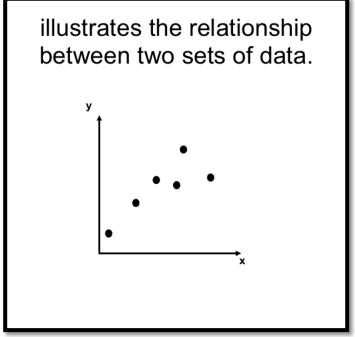
Data set
$$2\frac{1}{2}$$
, 3, $3\frac{3}{4}$, $3\frac{7}{8}$, 5, $5\frac{1}{2}$, $9\frac{1}{6}$, $10\frac{4}{5}$, $15\frac{1}{2}$, 20

$$20 - 2\frac{1}{2} = 17\frac{1}{2}$$

Range =
$$17\frac{1}{2}$$

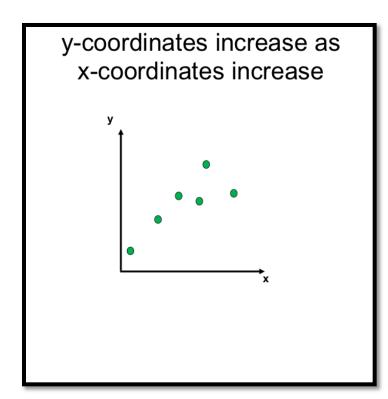


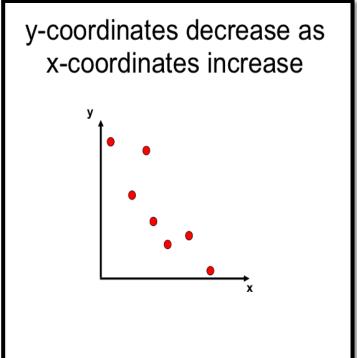


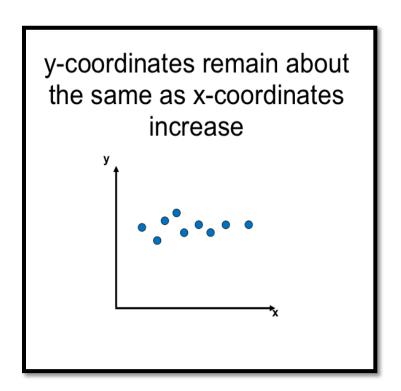

Range Mode

Line Graph Bar Graph

Math Test Scores 56, 65, 98, 82, 64, 71, 78, 86, 95, 91, 59, 70, 80, 92, 76, 82, 85, 91, 92, 73		
STEM	LEAF	
5	6 9	
6	4 5	
7	01368	
8	02256	
9	112258	
Key:	5 6 means 56	






Circle Graph

Stem-and-Leaf Plot

Scatterplot Histogram

Negative Correlation

Positive Correlation

Constant Correlation