

Congruent Figures

Dilation

Quadrilaterals

Triangles

- opposite angles are congruent
- 2 pairs of parallel sides
- 2 pairs of opposite sides congruent

- opposite angles are congruent
- 2 pairs of parallel sides
- 4 congruent sides
- 4 right angles
- 2 pairs of parallel sides
- 2 pairs of opposite sides congruent

Parallelogram

Quadrilateral Relationships

Rectangle

- 4 right angles
- 2 pairs of parallel sides
- 4 congruent sides

- may have zero or two right angles
- exactly one pair of parallel sides
- may have one pair of congruent sides

- one pair of opposite congruent angles
- 2 pairs of adjacent congruent sides

Trapezoid

Square

Composite Figure

Pythagorean Theorem

Three

Dimensional Models

Preimage	Image
$\mathrm{A}(-3,0)$	$\mathrm{A}^{\prime}(0,3)$
$\mathrm{B}(-3,3)$	$\mathrm{B}^{\prime}(3,3)$
$\mathrm{C}(-1,3)$	$\mathrm{C}^{\prime}(3,1)$
$\mathrm{D}(-1,0)$	$\mathrm{D}^{\prime}(0,1)$

Preimage	Image
$\mathrm{D}(1,-2)$	$\mathrm{D}^{\prime}(-1,-2)$
$\mathrm{E}(3,-2)$	$\mathrm{E}^{\prime}(-3,-2)$
$\mathrm{F}(3,2)$	$\mathrm{F}^{\prime}(-3,2)$

$$
\begin{array}{|c|c|}
\hline \text { Preimage } & \text { Image } \\
\hline \mathrm{A}(1,2) & \mathrm{A}^{\prime}(-2,-3) \\
\hline \mathrm{B}(3,2) & \mathrm{B}^{\prime}(0,-3) \\
\hline \mathrm{C}(4,3) & \mathrm{C}^{\prime}(1,-2) \\
\hline \mathrm{D}(3,4) & \mathrm{D}^{\prime}(0,-1) \\
\hline \mathrm{E}(1,4) & \mathrm{E}^{\prime}(-2,-1) \\
\hline
\end{array}
$$

center of dilation $=(0,0)$
scale factor $=\frac{1}{2}$

Preimage	Image
$A(0,4)$	$A^{\prime}(0,2)$
$B(4,0)$	$B^{\prime}(2,0)$
$C(0,0)$	$C^{\prime}(0,0)$

center of dilation $=(0,0)$
scale factor $=2$

Preimage	Image
$\mathrm{G}(0,-2)$	$\mathrm{G}^{\prime}(0,-4)$
$\mathrm{H}(0,0)$	$\mathrm{H}^{\prime}(0,0)$
$\mathrm{J}(1,0)$	$\mathrm{J}^{\prime}(2,0)$
$\mathrm{K}(2,-1)$	$\mathrm{K}^{\prime}(4,-2)$
$\mathrm{L}(1,-2)$	$\mathrm{L}^{\prime}(2,-4)$

Reflection

Dilation

Rotation Translation

Dilation

